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Mathematical Assessment of the Effects of Parabolic
and Spherical Surface Topographies on the Interfacial
State of Stress

Erol Sancaktar1 and Weijian Ma2

1Polymer Engineering Department, University of Akron,
Akron, OH, USA
2Expro Engineering, Liverpool, NY, USA

A mathematical procedure to utilize the complementary energy method was
developed, by minimization, in order to find an approximate analytical solution
to the 3-D stress distributions in bonded interfaces of dissimilar materials. In
order to incorporate the effects of surface topography, the interface was expressed
as a general surface in Cartesian coordinates, i.e., F (x, y, z)¼0. The 3-D stress
functions were used to produce 3-D stress components in dissimilar materials.
At the interface, the internal tractions in each of the coordinate directions were
balanced by the mathematical procedure. By using a penalty function method of
the optimization theory, integration of the complementary energy produced the
necessary equations to solve the 3-D stress distribution problem at the interface.
A noticeable advantage of our method is that the stress jumps at the interface
predicted in elasticity theory are captured, while standard finite element analysis
(FEA) methods usually have difficulty to show such stress jumps at interfaces. The
3-D mathematical procedure we developed for obtaining the stress components at
bonded bi-material interfaces offers significant promise in solving interface pro-
blems with different surface topographies, which can be described mathematically.
Thus, the procedure developed provides an efficient tool to optimize interface
construction by various methods such as chemical (etching), mechanical (machin-
ing, roughening, etc.), and other novel methods, such as laser ablation, currently
becoming available to achieve desired interface stress distributions for bonded
materials. In this paper, the parabolic interface problem, i.e., y¼ x2, and the
spherical interface problem, i.e., y¼ x2=4þ z2=4, are considered for an aluminum=

epoxy interface.
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1. INTRODUCTION

In order to design adhesive joints used in critical load bearing
applications, it is necessary to have a detailed knowledge of the stress
state and strength behavior of the joint. The finite element method
and the continuum mechanics approach have been successfully
applied to the analysis of adhesively bonded joints. A number of
studies [1–6] have been carried out using the finite element
method, which overcomes the difficulties arising from the geometrical
complexity of bonded joints. Lap and butt joints have been analyzed
extensively due to their common usage in engineering applications.

The need to produce more reliable and cost-effective joints demands
a general design methodology along with the task of comparing the
large array of adhesive joint configurations and determining which
type of joint best suits the requirements. This study helps in developing
a general methodology to compare adhesive joints for design optimiza-
tion as well as giving us insight into the effects, on mechanical
adhesion, of surface topography which can be considered a collection
of many geometrical forms. For this purpose, the stress distributions
were compared as functions of varying geometrical interfaces described
mathematically in polynomial or other functional forms, as well as the
material properties of the adhesive and the adherend or two different
substrates joined by an infinitesimally thin adhesive layer.

Interfaces usually constitute a weak link in the chain of load
transfer in bonded joints. Also, the discontinuity of the material
properties causes abrupt changes in stress distribution, as well as
causing stress singularities at the edges of the interfaces. It is very
desirable to optimize the substrate surface topography at the inter-
faces to maximize the load bearing capacity of bonded joints, and to
improve their deformational characteristics.

During the second half of the 20th century a considerable amount
of research work has been published related to the interface stress
distributions [7–28]. These studies focused on flat surfaces between
two different materials except when the effects of surface roughness
were investigated. In general, stress distributions, stress concen-
trations, singularities, and surface roughness effects were studied.
These studies, however, were not extended to the development of a
general methodology to include surface topography effects for varying
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configurations which can be represented by different mathematical
functions.

Recently, the finite element method has been successfully applied to
the analysis of several different interface stress-strain phenomena.
An investigation by Sancaktar and Narayan [29] on adhesively bonded
scarf joints revealed that the angle between the bonded interface and
the loading direction had a significant influence on the stress
distributions at the interface.

Sawa and coworkers [30–34] conducted a number of investigations
on the interface stress distribution in adhesively bonded butt joints
under different loading conditions. The finite element method and
the methods of elasticity based on stress functions were used in their
studies. In most cases 2-dimensional (2-D) stresses were studied;
in some cases, however, 3-dimensional (3-D) stress distributions were
also investigated.

The finite element analysis (FEA) employs an averaging procedure
from either side of the interface to arrive at interfacial stress values.
Consequently, a single stress component common to both substrates,
or the substrate and the adhesive, is reported for the interface.
In order to be able to obtain separate stress components specific to
each one of the bonded components on either side of the interface,
FEA requires employment of the elemental nodes not on the interface,
but on the next rows. This, however, presents a deficiency from the
analysis point of view, since the theory of composite materials dictates
that a stress jump occurs at bi-material interfaces. The mathematical
procedure proposed here does not possess this deficiency.

The need to determine realistic stress distributions for bonded
interfaces leading to interface optimization methodology to produce
more reliable and cost-effective joints [35] demands complex mathe-
matical treatments. For this purpose, a 3-D stress solution should be
considered superior to a 2-D stress solution as it includes all of the
stress components involved at the interface.

High levels of stresses result in crack propagation in brittle
adhesives and cavitation-induced failures in deformable adhesives.
Furthermore, not only the magnitudes but also the gradients of
stresses and strains become an important issue in optimizing the joint
strength. Large strain gradients at adhesive-substrate interfaces may
result in bond failure [18,36].

Many researchers used FEA to investigate adhesive joints [37–39].
Penado and Dropek [37] used FEA for single, double lap, and scarf
joints using four node quadrilateral plane strain elements. They
considered the stresses in the middle row of elements in the adhesive.
Sancaktar [18] and Baylor and Sancaktar [39] used FEA to execute
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2-D stress analyses of single lap, scarf, and butt joints. They studied
the effect of scarf angle on normal, shear, and transverse stress peaks
and distributions.

In our previous papers [40,41], we provided example calculations
using the 3-D mathematical procedure developed for obtaining the
stress components at bonded bi-material interfaces and compared
the results with the FEA results for the cases of flat (y¼ 0) and scarf
(y¼ x=2) interfaces. Those works revealed that even though most of
the stress distributions obtained were very similar to those obtained
with the FEA method, our method also predicted the stress jumps at
the interfaces, which could not be captured by the current FEA
methods. Thus, we concluded that the novel mathematical procedure
we developed offered significant promise in solving interface problems
with different surface topographies, which can be described mathe-
matically. This procedure not only provides 3-D stress information
for the interfaces, but for the whole bonded component. The novelty
of the procedure developed also includes the use of the penalty
function to enforce the displacement boundary conditions at the
interfaces. Furthermore, the mathematical procedure developed
enables the integration of different interfacial topographies into the
solution procedure, thus providing an efficient tool to optimize
interface construction by various methods such as chemical (etching)
[42], mechanical (machining, roughening, etc.) [42], and other novel
methods, such as laser ablation [35], currently becoming available to
achieve a desired interface stress distribution for bonded materials.

1.1. Purpose of the Study

This study attempts to describe the stress distribution on surfaces which
form the interfaces between two different bonded materials, and can be
described by the functional forms, y¼ x2 (parabolic) and y¼ x2=4þ z2=4
(spherical). Many investigations have been performed in the past to eval-
uate the stress distribution, fracture, failure, and deformation behaviors
of bonded joints with flat interfaces. However, no publishedwork is avail-
able which evaluates the 3-D stress distribution on general interfaces
with geometrical forms which can be expressed by polynomial or other
mathematical functions.We believe that in order to understand the inter-
facial phenomena to optimize the load transfer characteristics of bonded
joints and composite materials, in general, this type of mathematical
formulation is necessary. For this purpose, the parabolic interface y¼ x2

and the spherical interface y¼ x2=4þ z2=4were investigated in thiswork.
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For these purposes, approximate analytical expressions were
developed for 3-D stress distributions at bonded interfaces of specific
geometrical forms between substrates with different material pro-
perties, subjected to a tensile loading condition. We then developed a
complementary energy method, which, when combined with an
optimization method, enables the determination of the 3-D stress
components. Thus, a computer program was constructed to evaluate
the 3-D stress components using symbolic mathematic tools and
numerical methods. For this purpose, MAPLE mathematical software
(Maplesoft, Waterloo, Canada) was used, even though other com-
mercial mathematical software packages can be equally employed.
Finally, the methodology developed and the related computer program
constructed were applied to the cases of parabolic, y¼ x2, and the
spherical, y¼ x2=4þ z2=4, interfaces.

1.2. Study Hypotheses
1. Linear elastic behavior was assumed throughout the study.
2. The interface was assumed to be perfectly bonded.
3. Stress singularities at the interface edges were not fully considered

due to limitations with the computer capacity.
4. All force boundary conditions were fully imposed. The displace-

ment boundary conditions, however, were limited in number to
optimize the computational effort.

5. The complementary energy method rather than the potential
energy method was used. The complementary energy method has
been suggested to be superior to the potential energy method in
determining the stress components, since it does not use deriva-
tives to calculate the stresses as is done with the potential energy
method [28].

2. THEORY AND ANALYTICAL PROCEDURES

2.1. Geometrical Representation of the Bonding Surface

The adherend surface to be bonded can be represented by any
geometrical function,

F(x,y,z)¼ 0. Therefore, we have:

Fx ¼ @F=@x; Fy ¼ @F=@y; Fz ¼ @F=@z; ð1Þ

which are proportional to the direction cosines of the normal to the
surface F(x, y, z)¼ 0 at the point (x, y, z).
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2.2. Three-Dimensional Stress Functions

The mathematical form of the 3-D stress functions should be chosen
judiciously so as to be suitable for the intended application. This is
done by choosing those functions which satisfy the boundary and
compatibility conditions as well as the stress equilibrium conditions.

In order to find more suitable approximate solutions for stress
distributions, we need to consider a variety of mathematical forms.

Three different functions were tested to improve the degree of
approximation.

1. Hyperbolic

F1 ¼ ðw1 þ � � � þw5x
4Þ sinhðxÞ þ ðw6 þ � � � þw10x

4Þ coshðxÞ ð2Þ
2. Trigonometric:

F2 ¼ w1 sinðxÞ þw2 cosðxÞ þ � � � þw9 sinð5xÞ þw10 cosð5xÞ ð3Þ
3. Exponential:

F3 ¼ w1e
x þw2e

�x þw3e
2x þw4e

�2x þ � � � þw9e
5x þw10e

�5x ð4Þ

For initial analysis, the above three functions were used to approxi-
mate the functions 1, x, sin(px), cos(px), e3x=2, and ln [(2=5) – x2] in the
interval [(�1=2), (1=2)]. The terms 3=2 and 2=5 in the exponential
and logarithmic functions, respectively, were chosen arbitrarily. The
calculation method was as follows. Take ten points evenly distributed
in the interval including both ends. At each point, we make the
approximating function equal to the original function. Therefore, we
obtain ten linear equations. Solving the ten linear equations together,
the values of w1, w2,. . ., w10, can be found, and the approximating
function can be established. Our comparative calculations revealed
that F1 is suitable for approximation purposes.

To satisfy the compatibility conditions, the principle of mini-
mization of the complementary energy of the two-material system
was used. Following the variational principle of elasticity, the approx-
imate analytical solution was obtained. As the number of terms in the
polynomial stress functions increases, the solution should closely
approximate the exact case.

2.3. Boundary Conditions

To solve the stress distribution problem for the bonded joint, the
boundary conditions need to be defined first. The correct solution should
satisfy the stress and force equilibrium conditions on the surfaces of the
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two-body system including the interface F(x, y, z)¼ 0. The continuity of
displacements needs to be enforced at the interface area.

For stress balance at the interface, F(x, y, z)¼ 0, we have:

rAxxFx þ rAxyFy þ rAxzFz ¼ rBxxFx þ rBxyFy þ rBxzFz ð5Þ

rAxyFx þ rAyyFy þ rAyzFz ¼ rBxyFx þ rByyFy þ rByzFz ð6Þ

rAxzFx þ rAyzFy þ rAzzFz ¼ rBxzFx þ rByzFy þ rBzzFz; ð7Þ

where A and B define the two different material regions with
A corresponding to the substrate, and B to the adhesive bonded at
the interface, and the stress components, rij, are defined based on
the Cartesian system of Fig. 1.

The continuity of displacement is enforced at the interface area
using the fundamental theorem for surface theory of differential
geometry [43] instead of directly using displacements. This way, the
integrations of displacements are avoided, and the stress distribution
can be calculated more accurately.

FIGURE 1 Geometry and loading pattern used in the analysis for the
parabolic (y¼ x2) interface.
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Let ds¼ (dx, dy, dz) be any line element on the undeformed
interface, and ds’ the deformed line element of ds. On the interface
we have dy¼Fx dxþFz dz. Then,

½ðds0Þ2 �ðdsÞ2�=ðdsÞ2 ¼ exxl
2 þ eyym

2 þ ezzn
2 þ 2exymlþ 2exznlþ 2eyzmn;

ð8Þ

where, exx, eyy, ezz, exy, exz, and eyz are the strain components, and l, m,
and n are the initial direction cosines of the line element, ds. We call
the (ds0)2 the first fundamental form of the deformed interface.

Because ds is at the interface, each line element at the interface
belongs to both regions, and thus (ds’)2 should be the same for both
the Materials A and B. Then, we have

eAxx þ 2eAxyFx þ eAyyF
2
x ¼ eBxx þ 2eBxyFx þ eByyF

2
x ð9Þ

eAzz þ 2eAyzFz þ eAyyF
2
z ¼ eBzz þ 2eByzFz þ eByyF

2
z ð10Þ

eAxyFz þ eAyzFx þ eAyyFxFz þ eAxz ¼ eBxyFz þ eByzFx þ eByyFxFz þ eBxz; ð11Þ

where eAij and eBij are strain components of Materials A and B,
respectively.

At the interface the corresponding components of the partial
derivatives of rotation with respect to x and z should be the same at
any point. Therefore, we must have:

ð@eAxz=@yÞ � ð@eAxy=@zÞ þ Fx ð@eAyz=@yÞ � ð@eAyy=@zÞ
h i

¼ ð@eBxz=@yÞ � ð@eBxy=@zÞ þ Fx ð@eByz=@yÞ � ð@eByy=@zÞ
h i ð12Þ

ð@eAxx=@zÞ � ð@eAxz=@xÞ þ Fx ð@eAxy=@zÞ � ð@eAyz=@xÞ
h i

¼ ð@eBxx=@zÞ � ð@eBxz=@xÞ þ Fx ð@eBxy=@zÞ � ð@eByz=@xÞ
h i ð13Þ

ð@eAxy=@xÞ � ð@eAxx=@yÞ þ Fx ð@eAyy=@xÞ � ð@eAxy=@yÞ
h i

¼ ð@eBxy=@xÞ � ð@eBxx=@yÞ þ Fx ð@eByy=@xÞ � ð@eBxy=@yÞ
h i ð14Þ

ð@eAzz=@yÞ � ð@eAyz=@zÞ þ Fz ð@eAyz=@yÞ � ð@eAyy=@zÞ
h i

¼ ð@eBzz=@yÞ � ð@eByz=@zÞ þ Fz ð@eByz=@yÞ � ð@eByy=@zÞ
h i ð15Þ

ð@eAxz=@zÞ � ð@eAzz=@xÞ þ Fz ð@eAxy=@zÞ � ð@eAyz=@xÞ
h i

¼ ð@eBxz=@zÞ � ð@eBzz=@xÞ þ Fz ð@eBxy=@zÞ � ð@eByz=@xÞ
h i ð16Þ
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ð@eAyz=@xÞ � ð@eAxz=@yÞ þ Fz ð@eAyy=@xÞ � ð@eAxy=@yÞ
h i

¼ ð@eByz=@xÞ � ð@eBxz=@yÞ þ Fz ð@eByy=@xÞ � ð@eBxy=@yÞ
h i : ð17Þ

We will refer to the above relationships (12–17) as ‘‘the second
fundamental form of the deformed interface.’’ According to the funda-
mental theorem for surface theory of differential geometry, we can say
that, ‘‘if first and second fundamental forms have been predetermined,
then a surface is uniquely determined except for its position in space.’’

The continuity of displacement is enforced at the interface area.
For the complementary energy formulation, the variation of comple-
mentary energy, dI, can be described as:

dI ¼ dn�
Z
S1

uS1
i dpS1

i dS�
Z
S2

uS2
i dpS2

i dS�
Z
Si

uA
i dp

A
i dS�

Z
Si

uB
i dp

B
i dS:

ð18Þ

The function n is the complementary energy defined by

n ¼
Z
V

n0 dV; ð19Þ

where n0 is called the complementary energy density defined by

n0 ¼ �U0 þ rijeij: ð20Þ

The Uo function is the strain energy density:

U0 ¼
1

2
rijeij ¼

1

2
Cijkleijekl; ð21Þ

where the elastic constants Cijk1 are the components of a Cartesian
tensor of the fourth order.

We divide the outside boundary surface, S, into two zones, S1

and S2. On S1 the traction components pS1
i are specified so that

dpS1
i ¼ 0, while on S2 the displacements uS2

i are specified. The Si is
the interface between the two different materials, where uA

i , u
B
i and

pA
i , p

B
i are displacements and traction forces on each material inter-

face, respectively. From the interface stress balance just mentioned
above, we have pA

i ¼ �pB
i , and we obtain
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dI ¼ dn�
Z
S2

us2
i dps2

i dS�
Z
Si

ðuA
i � uB

i ÞdpA
i dS: ð22Þ

Let uA
i ¼ uB

i , then

dI ¼ dn�
Z
S2

us2
i dps2

i dS: ð23Þ

When no external displacement boundary conditions are specified,
S2 is a zero set, and we have

dI ¼ dn: ð24Þ

Thus, we have imposed both the force and displacement boundary
conditions at the interface.

Based on the above discussions, we assume that the deformed
interfaces of Materials A and B are identical, and S2 is zero. Further-
more, we note that due to computational difficulty, the condition of
displacement match between the Bodies A and B at the interface could
not be done exactly. The deformed interfaces will match approximately
by minimization of compatibility conditions in Bodies A and B, and by
the employment of the penalty function to minimize any interfacial
displacement mismatch numerically. This will be further explained
in Section 2.4.1.

2.4. Compatibility Equations

Elasticity principles dictate that any stress distribution should
satisfy the compatibility equations. If 3-D stress functions are used
in conjunction with the variational method and the complementary
energy method, it can be shown [44–46] that the six compatibility
equations are automatically satisfied when the complementary energy
reaches its minimum value.

2.4.1. Minimization of the Complementary Energy
Function Using Penalty Functions

In the above discussion, we proposed the minimization of the
complementary energy function because it had a positive defined
quadratic form. By using the Newton quadratic optimization method
[47] we can easily find the minimum point. In order to find the
minimum solution of f(x), which is subjected to giðxÞ � 0; i ¼ 1; 2; . . . ;n
and hjðxÞ ¼ 0; j ¼ 1; 2; . . . ;m, we want to use the penalty function
method [48]. The penalty function method requires users to form a
special function pðx;RÞ ¼ fðxÞ þ X½R; gðxÞ;hðxÞ�, where R is a set of
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penalty parameters and X is a function of R, g(x), and h(x). The exact
way in which the X is formed depends on different situations.

One specific form of the X function is X ¼ ½hðxÞ�2R in the absence of
the g(x) terms. This yields pðx;RÞ ¼ fðxÞ þ ½hðxÞ�2R. Notice that the
parameter R equally discourages positive or negative violations of
hðxÞ ¼ 0. In addition, it is clear that with increasing values of R the
stationary values of p(x, R) will reach xm, since, in the limit, as R
grows large, hðxÞ ! 0.

To find the minimum value of the complementary energy subjected
to the condition uA

i ¼ uB
i , at the interface, we can construct a function

P ¼ Iþ R
Xy¼fðx;zÞ

i¼1...3

ðuA
i � uB

i Þ
2; ð25Þ

where R has a very large positive value. Since I has a minimum value
and a quadratic form, and R

Py¼fðx;zÞ
i¼1...3 ðuA

i � uB
i Þ

2 is positive defined,
P also has a minimum value and a quadratic form.

Consequently, using the Newton quadratic method, we can find an
approximate solution to minimize the complementary energy of the
two-body system subjected to the interface geometry boundary condi-
tions. To choose the R, it was found that the R must be large enough
to impose the interface displacement matching, by satisfying Eqs. (9–17)
using the least squares approximation, as well as minimization of the
complementary energy, while not causing a big change in the comple-
mentary energy of the total system. For this purpose an iterative scheme
was used with the initial value R ¼ 0. Subsequent to its second value of
unity, the R value was increased by tenfold in subsequent increments
until the change in the complementary energy was larger by about
0.1%, which was chosen arbitrarily for numerical expediency. For the
work reported in this article, this iteration resulted in the R value of 106.

2.5. Summary of the Proposed Mathematical Procedure

The following steps were used to obtain the stress distributions:

1. Choose the appropriate stress functions, Umn, to satisfy stress
boundary conditions.

2. Relate the stress functions, Umn, to the stress distribution
functions, r.

3. Use stress interface boundary conditions, Eqs. (5–7), to reduce the
unknown variables in the stress distribution functions obtained.

4. Define a function P according to Eq. (25). P is the sum of the
complementary energy I, and the penalty function, R

Py¼fðx;zÞ
i¼1...3
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ðuA
i � uB

i Þ
2R, was chosen such that it is the largest positive number

which causes the total system complementary energy to change by
only 0.1%

5. Use the remaining unknown variables to minimize the function P
formed in Step 4, and solve all the unknown variables to obtain the
complete stress distribution functions.

3. RESULTS AND DISCUSSION

The coordinate system used is shown in Fig. 1.

3.1. General Form of the Stress Functions

The stress functions used are given by the following general equations:

UA
xx ¼ ½z2 � ð1=4Þ�2½y� ð1=2Þ�2f1ðx; y; zÞ ð26Þ

UA
yy ¼ ½z2 � ð1=4Þ�2½x2 � ð1=4Þ�2f2ðx; y; zÞ ð27Þ

UA
zz ¼ ½x2 � ð1=4Þ�2½y� ð1=2Þ�2f3ðx; y; zÞ ð28Þ

UA
xy ¼ ½x2 � ð1=4Þ�½z2 � ð1=4Þ�2½y� ð1=2Þ�f4ðx; y; zÞ ð29Þ

UA
xz ¼ ½x2 � ð1=4Þ�½z2 � ð1=4Þ�½y� ð1=2Þ�2f5ðx; y; zÞ ð30Þ

UA
yz ¼ ½x2 � ð1=4Þ�2½z2 � ð1=4Þ�½y� ð1=2Þ�f6ðx; y; zÞ ð31Þ

UB
xx ¼ ½z2 � ð1=4Þ�2½yþ ð1=2Þ�2f7ðx; y; zÞ ð32Þ

UB
yy ¼ ½z2 � ð1=4Þ�2½x2 � ð1=4Þ�2f8ðx; y; zÞ ð33Þ

UB
zz ¼ ½x2 � ð1=4Þ�2½yþ ð1=2Þ�2f9ðx; y; zÞ ð34Þ

UB
xy ¼ ½x2 � ð1=4Þ�½z2 � ð1=4Þ�2½yþ ð1=2Þ�f10ðx; y; zÞ ð35Þ

UB
xz ¼ ½x2 � ð1=4Þ�½z2 � ð1=4Þ�½yþ ð1=2Þ�2f11ðx; y; zÞ ð36Þ

UB
yz ¼ ½x2 � ð1=4Þ�2½z2 � ð1=4Þ�½yþ ð1=2Þ�f12ðx; y; zÞ: ð37Þ

3.2. Application for the Parabolic (y¼ x2) Interface

The interface y¼ x2 is shown in Fig. 1. For the parabolic interface, the
functions fn(x, y, z) are of the type:

fnðx; y; zÞ ¼ gn1 sin hðxÞ sin hðzÞ þ gn2 sin hðxÞ cos hðzÞ
þ gn3 cos hðxÞ sin hðzÞ þ gn4 cos hðxÞ cos hðzÞ;

ð38Þ
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where gni are defined by:

gni ¼ hni1 þ hni2xþ hni3z: ð39Þ

hni1, hni2, and hni3 are polynomials of [anij1þ . . .þ anijm (y� x2)m�1],
where anijk are the constants of the polynomial. Figures 2–5 show
the stresses rxx (Fig. 2), ryy (Fig. 3), rzz (Fig. 4), and rxz (Fig. 5),
(a) on the epoxy adhesive (Body B) and (b) on the aluminum substrate
(Body A) for each figure at the parabolic bi-material interface, as
calculated by the mathematical procedure. As illustrated by compari-
sons of the stresses in each of these figures, stress jumps are observed
in all of the interfacial stress distributions with transition between
Bodies A and B. We note that since the stress distributions are plotted
in reference to the global coordinate system (see Fig. 1), the fact that the
interface is varying as y¼ x2 function with respect to the global y and x
axes affects the presence and the magnitude of these stress jumps. For
example, for ryy (Fig. 3), the stress jump observed between Bodies A and
B is solely due to this coordinate transformation as force balance is
maintained between Bodies A and B in the direction perpendicular to
the interface. However, we should also note that the ‘‘stress jump’’ is
a real physical phenomenon for bonded interfaces and it is observed
for transverse stresses rxx, rzz, and for the shear stress rxz, even in
the case of flat interfaces, which are perpendicular to the applied
distributed loads (Fig. 1), as illustrated in our earlier work [40].

The stresses rxy and ryz on the epoxy adhesive (Body B) at the
parabolic bi-material interface, as calculated by the mathematical
procedure, are shown in Fig. 6.

FIGURE 2 Stress rxx, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the parabolic bi-material interface, as
calculated by the mathematical procedure.
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3.3. Application for the Spherical (x2þ (y� 2)2þz2¼ 4)
Interface

The spherical interface x2þ (y� 2)2þ z2¼ 4 can be approximately
expressed by polynomial y¼ x2=4þ z2=4, and it is shown in Fig. 7.
Therefore, all of the functions fn (x, y, z) are of the type:

fnðx; y; zÞ ¼ gn1 sinhðxÞ sinhðzÞ þ gn2 sinhðxÞ coshðzÞ
þ gn3 coshðxÞ sinhðzÞ þ gn4 coshðxÞ coshðzÞ;

ð38Þ

FIGURE 3 Stress ryy, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the parabolic bi-material interface, as
calculated by the mathematical procedure.

FIGURE 4 Stress rzz, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the parabolic bi-material interface, as
calculated by the mathematical procedure.
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where gni are defined by:

gni ¼ hni1 þ hni2xþ hni3z: ð39Þ

hni1, hni2 and hni3 are polynomials of {anij1þ � � � þ anijm [y – (x2=4)-
(z2=4)]}, where anijk are the constants of the polynomial. Figures 8–11
show the stresses rxx (Fig. 8), ryy (Fig. 9), rzz (Fig. 10), and
rxz (Fig. 11), (a) on the epoxy adhesive (Body B) and (b) on the alumi-
num substrate (Body A) for each figure at the spherical bi-material

FIGURE 5 Stress rxz, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the parabolic bi-material interface, as
calculated by the mathematical procedure.

FIGURE 6 Stresses (a) rxy and (b) ryz on the epoxy adhesive (Body B) at the
parabolic bi-material interface, as calculated by the mathematical procedure.
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FIGURE 7 Geometry and loading pattern used in the analysis for the
spherical (x2þ [y� 2]2þ z2¼ 4) interface.

FIGURE 8 Stress rxx, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the spherical bi-material interface, as
calculated by the mathematical procedure.
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interface, as calculated by the mathematical procedure. As illustrated
by comparisons of the stresses in each of these figures, stress jumps
are again observed in all of the interfacial stress distributions with
transition between Bodies A and B.

The stresses rxy and ryz on the epoxy adhesive (Body B) at the
spherical bi-material interface, as calculated by the mathematical
procedure, are shown in Fig. 12.

FIGURE 9 Stress ryy, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the spherical bi-material interface, as
calculated by the mathematical procedure.

FIGURE 10 Stress rzz, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the spherical bi-material interface, as
calculated by the mathematical procedure.
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3.4. Comparison of Normal and Shear Stresses on Different
Interfaces

In the theory of strength of materials, the normal stress and the shear
stress play important roles in determining the conditions at which
damage can occur.

Our mathematical procedure can easily provide the normal stress
and shear stress on the interfaces.

For comparison purposes, the normal stresses on different
interfaces are plotted in Fig. 13, and the shear stresses are plotted

FIGURE 11 Stress rxz, (a) on the epoxy adhesive (Body B) and (b) on the
aluminum substrate (Body A) at the spherical bi-material interface, as
calculated by the mathematical procedure.

FIGURE 12 Stresses (a) rxy and (b) ryz on the epoxy adhesive (Body B) at the
spherical bi-material interface, as calculated by the mathematical procedure.
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in Fig. 14. As can be seen, the normal stress distributions are different
on different interfaces. On the interface y¼ 0, the normal stress is
maximum at the four comers. On the interface y¼ x=2, the maximum
normal stresses are at the two edges, z¼� 0.5. On the interface y¼ x2,
the maximum normal stresses are still on the two edges, z¼� 0.5, but
with about 10% less magnitude in comparison with the interface
y¼ x=2. On the interface x2þ (y� 2)2þ z2¼ 4, the normal stress has
a peak at the center, as well as two peaks on each of the four edges.
These peak values are rather close in magnitude and about 10%
smaller than the peaks we observe on the interface y¼ x2.

The (in-plane) shear stresses are also different on different
interfaces. But they have one thing in common, that is, the maximum
shear stresses are always near the corners. The slopes of the interfaces

FIGURE 13 Normal stresses on different interfaces as calculated by the
mathematical procedure.
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with the x-z plane determine the magnitudes of the maximum
shear stresses. We note that in all four interfaces studied, only the
shear stress peaks on the interface y¼ x2 exceed 50% of the peak
normal stress magnitudes, reaching approximately 56% of the normal
stress along the z-axes shown in Figs. 13 and 14.

It is possible that, by changing the interfacial surface topography,
an optimal interface can be found which will reduce the risk of
interfacial damage caused by maximum normal stress and=or shear
stress on the interfaces. Examination of Fig. 13 clearly reveals the flat
interface, y¼ 0, as the most critical with highest normal stress magni-
tudes at each one of its four corners. Such stress peaks at corners are
reduced significantly when the interface geometry is changed to those
of scarf (y¼ x=2), parabolic (y¼ x2), or spherical [x2þ (y� 2)2þ z2¼ 4].
In fact, nowhere on these three geometries do the normal stress

FIGURE 14 In-plane shear stresses on different interfaces as calculated by
the mathematical procedure.
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magnitudes exceed the peak values observed at the corners of the y¼ 0
surface. Further examination of Fig. 13 reveals the spherical surface
as the most favorable of the four examined, since it has the lowest
normal stress peaks, as well as (relatively) more uniform normal
stress distribution. Examination of Fig. 14 reveals this finding to be
true with the consideration of shear stress distribution on spherical
interfaces as well.

4. CONCLUSIONS

The 3-D mathematical procedure we developed for obtaining the stress
components at bonded bi-material interfaces offers significant promise
in solving interface problems with different surface topographies,
which can be described mathematically. Thus, the procedure devel-
oped provides an efficient tool to optimize interface construction by
various methods such as chemical (etching), mechanical (machining,
roughening, etc.), and other novel methods, such as laser ablation,
currently becoming available to achieve a desired interface stress
distribution for bonded materials. In this paper, using our procedure,
we illustrated that the spherical surface is the most favorable in com-
parison with flat (y¼ 0), scarf (y¼ x=2), or parabolic (y¼ x2) interfaces
since it has the lowest normal and shear stress peaks, as well as
having (relatively) more uniform stress distributions.
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